
A closer look at stochastic frontier
analysis in economics

Hung T. Nguyen
Department of Mathematical Sciences, New Mexico State University, Las Cruces,

New Mexico, USA

Abstract
Purpose – While there exist many surveys on the use stochastic frontier analysis (SFA), many important
issues and techniques in SFA were not well elaborated in the previous surveys, namely, regular models,
copula modeling, nonparametric estimation by Grenander’s method of sieves, empirical likelihood and
causality issues in SFA using regression discontinuity design (RDD) (sharp and fuzzy RDD). The purpose of
this paper is to encouragemore research in these directions.
Design/methodology/approach – A literature survey.
Findings –While there are many useful applications of SFA to econometrics, there are also many important
open problems.
Originality/value – This is the first survey of SFA in econometrics that emphasizes important issues and
techniques such as copulas.

Keywords Copulas, Fuzzy regression discontinuity, Empirical likelihood, Production efficiency,
Regular models, Regularized regression

Paper type Research paper

1. Introduction
This paper is viewed as an addition to existing surveys on the state-of-the-art of stochastic
frontier analysis (SFA) in econometrics, in the sense that it spells out and emphasizes not
well-known research methodologies which could be useful for advancing the topic toward
more credible and efficient results. Accepting that “all models are wrong, but some are
useful,” the stochastic frontier models (SFM) in microeconomics are useful models to
investigate production efficiency and are interesting regression models among other types
of regression models in econometrics. They present a typical example for developing
advanced statistical methods to make results coming out from it rigorous and trusted.
Without getting into the general setting of partial identification, we look at current efforts to
handle point identification and estimation problems of SFM. The first lesson to learn in
proposing models in empirical research is that we need to be careful with their validity and
that should be based upon theories. The actual accepted SFM came out from the fact that a
naive model is not regular, so that, among other things, the standard maximum likelihood
estimation (MLE) method cannot be used. Afterward, when trying to make the statistical
analysis more credible, by relaxing parametric assumptions, but still having the MLE
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method in mind, it seems useful to point out the sieves MLE method for, say, semi-
nonparametric estimation in SFM. The SFM is ideal for introducing copulas into statistical
modeling. While SFA is somewhat fully explored in the context of association inference, it is
about time to move to causal inference, especially using observational data from regression
discontinuity design (sharp and fuzzy RDD).

The paper is structured as follows. We emphasize in Section 2 the need to check
regularity of proposed models before proceeding to statistical analysis, with an example
from survival analysis. In Section 3, we elaborate on copula modeling in SFA. In Section 4,
we call researchers to pay attention to a not very well known nonparametric estimation
method (MLE based) which should be used in SFM to render SFA more credible. We
illustrate Grenander’s method of sieves with an example of identification and estimation of
an infinitely dimensional parameter in a diffusion model. Finally, in Section 5, we touch
upon causal inference in SFAwith emphasis on using RDD.

2. Generalities on stochastic frontier analysis
We take a closer look at a typical topic in economics which seems to exhibit most of the
“statistical concerns” that we focus in this paper to move forward to a credible and efficient
econometrics.

The background on stochastic frontier analysis (SFA), up to 2000, is summarized in
(Kumbhakar and Knox Lovell, 2000). We retrace the road leading to it to illustrate how to
develop better statistical methods to study an economic issue.

We are concerned with the efficiency of firms’ production in microeconomics. For that,
we need to be able to measure it or at least estimate it. The quantity (or “parameter”) of
interest is the efficiency of a firm (when it uses its technology to produce outputs from
available inputs). While the notion of “efficiency” is understood in common sense, it is fuzzy
in nature. However, it is possible to quantify it (or in “technical terms,” to defuzzify it) for
application purposes. When viewing production efficiency as “degrees of success” (of
producers), we are concerned with carrying out econometric analysis to estimate them.

Starting with (Cobb and Douglas, 1928), the economic analysis proceeded as follows. First,
we formulate the problem to be investigated. For a given technology, a firm tries to produce a
maximum output y from an available input x. Such a production process is expressed as a
production function w (x) = y. In fact, this production function could depend on some unknown
factor u (a vector of technological parameters), so that, in a simple form, we consider y =
w (u , x), i.e. we consider a parametric form of a production function. Then, our task is to identify
u and estimate it, fromwhichwe could infer the technology efficiency of interest.

Remark. You could realize right away that this is a “traditional” modeling process,
namely, “regression” practice!

To estimate u , we need data. Let I = {1, 2,. . .,k} be a finite set of producers. Let xi be the
input, say, a d–vector, of producer i, to produce a, say, scalar output y, i [ I. Our data, say,
consists of cross-section data (xi, yi), i [ I. Can you guess the next step? i.e. how to estimate u
from such data and model assumptions? Well, remember how Legendre invented his OLS
method? We have k equations and d unknowns. To transform them into an “ordinary”
situation, namely, d equations with d unknowns, to solve for the d components of u , we use
either the mean squared error (MSE) or the least absolute deviation error (LAD) concepts, i.e.
estimating u byminimizing either:

Xk
i¼1

yi � w u ; xið Þ½ �2 or
Xk
i¼1

jyi � w u ; xið Þ j
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To carry out the above minimization problems, in some simple way (!), we “assume” some
simple form for the function, just like in linear regression, namely, that:

w u ; xið Þ ¼ u xi ¼
Xd
j¼1

u jxij

With these simplifications, the above optimization problems can be solved by quadratic and
linear programming techniques, respectively.

Note, however, that, as w (u , x) = y represents the maximum produced output, the above
optimization problems are subject to the same constraint yi# w (u , xi), i [ I.

Just like OLS without random error term, the above ad-hoc estimation procedures lack
statistical justifications. In fact, “noise” and technical inefficiencies of firms should be also
parts of the model. Putting these two uncertainties together, the model becomes:

yi ¼ w u ; xið Þ þ « i; i ¼ 1; 2; . . . ; k

First, if « is an “ordinary” noise, i.e. can be modeled as, say, a normal distribution, then the
structural model should be in log-form, i.e.:

log yi ¼ logw u ; xið Þ þ « i; i ¼ 1; 2; . . . ; k

Moreover, by the nature of the problem itself, the noise « must be nonpositive (one-sided
disturbance), i.e. « # 0 (almost surely) to make log yi = log w (u , xi), for all i. for example,� «
could be modeled as a half-normal distribution. or an exponential distribution (leading to
quadratic and linear programming, respectively). Thus, the estimator of u in the above
stochastic model is maximum likelihood estimators (MLE) under these special error
distributions. Are we happy with that? You may say, why not, is this similar to OLS in
general linear regression with Gaussian noise? Unfortunately, this is not similar to OLS in
linear regression.Why?

It is true that, under special error distributions above, the estimator of u (in the Cobb-
Douglas log-linear model) is obtained as an MLE. However, what good to say that an
estimator is an MLE? Well, to ascertain that the estimator has all the “good” statistical
properties of an MLE, namely, (strong) consistency and asymptotically normal. However,
recall that there are conditions for MLE to have such good properties. Specifically, MLEs are
“good” if the model is regular.

Remark. Statistical procedures are “valid” under specified conditions. For example,
AIC or BIC can be used only to select regular models. In other words, each procedure has
its domain of applicability. These model selection criteria are established under the
assumption that the model is regular. So, if a model is not regular, empirically you still
can compute its AIC or BIC, but there is no rationale to use them to judge the model’s
quality (for explaining or for prediction). Using them, without checking their
applicability conditions, is wrong.

Let’s spell out, for ease of reference, the regularity conditions of a statistical model. These
are conditions under which, MLE is proved to be consistent and asymptotically normal. A
statistical model satisfying these conditions is called a regular model. A non-regular model
might not have MLE! Specifically, a regular model is a parametric model satisfying the
following conditions.

LetX be a random vector with probability density f(x, u ) with u 2 H � Rd .
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The model F ¼ ff x; uð Þ: u 2 H � Rdg is called a regular model if it satisfies the
following regular conditions:

(1) The mapping u ! Pu (dx) = f(x, u )dx is injective (one-to-one);
(2) The probability measure Pu (dx), u [H, has common support;
(3) The parameter spaceH is an open set of Rd ;
(4) For almost all x, all third-order partial derivatives @3f x;uð Þ

@u i@u j@u k
exist for all u [H;

(5) For all u 2 H; Eu
@logf X;uð Þ

@u

h i
¼ 0;

(6) Eu � @2logf X;uð Þ
@u @u

0

h i
is finite and positive definite; and

(7) There exist functionsMijk such that Eu o Mijk Xð Þ� �
< 1 (u o is the true parameter).

The above regular conditions are used to obtain asymptotic properties of MLE. For proof,
see e.g. (Nguyen and Rogers, 1989).

Back to our efficiency estimation. It is “interesting” that we run into a non-regular model,
so that, havingMLE does not help for justifying the estimation procedure.

The condition (2) is violated. Look at our model:

log yi ¼ logw u ; xið Þ þ « i; i ¼ 1; 2; . . . ; k

As yi # w (u , xi), i [ I, the range of the random variable Y depends on the parameter u to be
estimated. In other words, the probability measures Pu (dy), u [ H, do not have common
support.

A situation such as this surfaces often in many areas of applications, so that either
statistical properties of MLE (when they do exist) need to be proved (and not just based on
established results in the regular case), or, if MLE does not exist (See an example shortly), we
must look for other estimation methods.

Typically, the above condition (2) is violated when some components of the parameter
vector u lie in the support of the model, e.g. in change-point models of econometrics. Here is a
situation in survival analysis.

It is observed that failures of lifetimes of subjects appear to occur at one rate and late
failures appear to occur at another rate. If we denote by F(t),f(t) the population distribution
and density functions of lifetimes, respectively, then the above observation is expressed in
terms of the hazard rate function, as:

f tð Þ
1� F tð Þ ¼ a1 0;t½ � tð Þ þ b1 t ;1ð Þ tð Þ

This differential system gives the lifetime model (a special case of the extended Cox’
proportional hazardmodel):

f tjuð Þ ¼ a expf�atg1 0;t½ � tð Þ þ b expf�at � b t � tð Þg1 t ;1ð Þ tð Þ

where the parameter u = (a,b,t ) [H = ([0,1))3.
Now, if T1, T2, . . ., Tn is a random sample from the population with density f(tju ), then

the log-likelihood function is
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L uð Þ ¼
Xn
i¼1

log að Þ1 0;t½ � Tið Þ � a
Xn
i¼1

Ti1 0;t½ � Tið Þ

þ
Xn
i¼1

f1� 1 0;t½ � Tið Þgflog b� a� bð Þtg � b
Xn
i¼1

Tif1� 1 0;t½ � Tið Þg

Let R(t ) = r be the number of the Ti # t and denote the order statistics as ti. Then L(u ) is
proportional to:

r log a� a
Xr

i¼1

ti þ n� rð Þflog b� a� bð Þtg � b
Xr

i¼rþ1

ti

For tn�1# t # tn, this reduces to:

n� 1ð Þlog a� a
Xn�1

i¼1

ti � at þ logb� b tn � tð Þ

If we let b ¼ 1
tn�t and t ! tn, then clearly L(u ) is unbounded. Note that, if a> b, then L(u ) is

bounded, but, asH is unbounded, it is not clear that sup L(u ) can be attained.
As a consequence, we cannot estimate the unknown “change-point” t by the standard

method of maximum likelihood. So, how to estimate t , of course, consistently? Note that,
once t is estimated (consistently), the hazard rates a, b can be estimated consistently.

A characterization of t is this. Let:

Mn tð Þ ¼
Xn
i¼rþ1

ti
n� r

. . . ; S2
n tð Þ¼

Xn
i¼rþ1

t2i
n� r

- Mn tð Þ� �2

andTn ¼ 1
n

Xn
i¼1

Ti. Then applying the strong law of large numbers several times, we get:

Xn tð Þ ¼ 1
n

(
Sn tð Þ

"
n� rð Þlog n

n� r
� r

� �
þ rMn tð Þ � Tn

_
log

n
n� r

)

converging strongly to zero, as n!1.
Thus, as a familiar strategy, we consider the stochastic process Xn(t), t � 0 and value t̂n

such that Xn t^n
� �

is close to zero is taken as a candidate for an estimate of t . Of course, it
remains to prove that t̂n converges strongly to t as n ! 1. It is indeed so, i.e. there is a
strongly consistent estimator for the change-point t , see the proof in (Nguyen et al., 1984).

Remark. It is interesting to note that the above “change-point” problem is different than
common models in structural changes in econometrics, as here the change-point t is a point
of discontinuity in the distribution function of a DGP. On the other hand, follow-up studies
to complete this change-point hazard rate problem in survival analysis were in (Nguyen and
Pham, 1982), (Nguyen and Pham, 1990).

Now, the above model for efficiency estimation also has another drawback, namely, it
cannot isolate the effect of inefficiency from that of the random noise as these two types of
effects are lumped together in one disturbance term « .
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The actual improved stochastic frontier model is as follows. As an input x 2 Rd
þ (e.g.

labor, resource, capital, [. . .]) can produce various different, say, scalar outputs y, depending
on how to “manage” the input, there is such thing as the “production frontier,” namely, the
maximum output an input can produce w (x) = max{y:x! y}. If we know the frontier w (.) (of
a given technology) then, when observing (xi,yi) from firm i, we can take yi

w xið Þ as the (degree)
of technology efficiency of firm i.

Now, an output y could be a result, not only of an input x and the production technology
but also of some random “shock,” resulting in a value, which could exceed the frontier value
w (x). Thus, the concept of” frontier” should be extended to a “stochastic frontier”: x !
w (x) þ V, with V being a symmetric random noise (variable), to cover this situation.
For w (x)þ V to be a frontier, we would have Y# w (X)þ V. Therefore, if we letU = w (X)þ
V �Y, then the random variable U is nonnegative (U � 0, a.s.), representing the technical
inefficiency.We arrive at the so-called stochastic frontier model (SFM):

Yi ¼ w Xið Þ þ Vi � Ui

In particular, a (parametric) linear SFM is

Yi ¼ X
0
iu þ Vi � Ui

Remark. As Ui “captures” technology inefficiency of firm i, we would like to “estimate” it,
from observations across firms (Xi, Yi), i [ I. However, like V, U is not observable! However,
if we could estimate u , by some estimation method, then we can compute the estimated
residuals « i = vi� ui by «^i ¼ yi � x

0
iû which are values of the random variableV�UThus,

in MSE sense, the best predictor ofUi is E UijVi � Ui ¼ «^i
� �

:

3. Entering copulas
The (linear) stochastic frontier model is an “interesting” linear regression model Y =X0u þ
V�U, in which the random “error term”V –U consists of two separate terms.

If we assume, say, a parametric form of the distribution of V – U, then we could estimate
u by MLE. However, it is very important to remember that, in a situation such as this, not
only do we need to justify anymodel assumptions but also keep in mind that “while stronger
assumptions lead to stronger results but also take us further away from realities!” Empirical
research must be credible in the first place. Within credible statistics, we still need to do our
best, i.e. strike to achieve “efficient” inference (not only via the search for best inference
procedures but also via the waywe collect data).

To estimate u in the linear model Y =X0u þ V �U, we should first examine the
identification of the parameter of interest, before jumping into the estimation problem!.

Note that, in applications, as X, Y are non-negative quantities, we are considering a
(Cobb-Douglas) log-linear model.

Now, by their nature, we can somewhat justify the forms of the distributions of the errors
U and V, for example, the distribution F of U could be an exponential or half-normal
distribution, whereas the distributionG ofV could be a normal distribution.

The question is: Is u identifiable, point or partial? from the data and model assumptions
so far? The answer is no, as not only U, V are latent variables (no observations from them
available) so that F, G cannot be estimated but also because we cannot even carry out MLE,
as the distribution ofV –U is not known (in the form) even F, G are specified parametrically.

Remark. Even in a general situation where the marginal distributions F, G of two random
variables U, V are estimable, say, when we have observations from U and V, the joint
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distribution H of the random vector (U, V) is only partially identified, so that our “parameter
of interest,” namely, the distribution ofV –U is not point identified. However, in such a case,
the distribution K of V – U is partially identified, as, in view of Frechet’s bounds (See a text
on copulas, e.g. (Durante and Sempi, 2016), we have:

maxfF uð Þ þ G vð Þ � 1; 0g#H u; vð Þ#minfF uð Þ;G vð Þg

fromwhichK(.) can be partially identified.
As a “habit” in empirical practice, econometricians impose more assumptions to reach

point identification so that they can estimate u , without worrying about whether additional
assumptions (even if justifiable) will take them further away from realities, let alone
considering estimation in a partially identified model. For the topic of partial identification,
see (Manski, 2003).

Let’s look at model assumptions maintained in, say, “traditional” statistical practices, in a
situation such as SFM. First, “assume” that V is N(0,s 2) and U is exponential with density
1
a e

�u
a

� 	
1 u>0ð Þ or half normal, i.e. U is distributed as jN(0,h 2)j (with probability density offfiffi

2
p
h

ffiffiffi
p

p expf� u2
2h 2g1 u>0ð Þ).

As we need the distribution of the error term « = V �U in the regression model, the
knowledge of the marginal distributions of U, V is not enough. We need the joint
distributionH of (U,V) for it. Well, the simplest way to getH from F andG is to “assume” (or
take)H(u,v) = F(u)G(v), i.e. assuming thatU andV are independent.

Remark. It is “interesting” to note that, starting with Frechet’s work in 1951, Abe Sklar
asked himself “what are all possible joint distribution functions H admitting given
marginals F andG?” Leading to his PhD thesis in 1959, in which he “discovered” the concept
of copulas. Prior to the discovery of copulas, and even after that, econometricians and
statisticians still asked “are copulas useful?” Because, when facing the marginal problem,
they rely on additional “conditional models” to get the joint distribution, avoiding even the
partial identification issue. Among others, SFA is a perfect situation where we might not
have additional conditional models.

It has to wait until 1990 for an explosion of copulas everywhere. Also, without being
aware of Sklar’s work in 1959, probabilists consider, as “difficult” an exercise of the
form “find a joint distribution admitting two given marginals” (as given above in an
SFM)!

Thus, without knowing the existence of copulas, it is not surprising that the only
“feasible” additional assumption to get point identification is to assume independence of the
error components in an SFM! Of course, with all assumptions so maintained, point
identification is possible and estimation procedures are implemented.

Although copulas were known to econometricians in the 1990s, it did take some time for
them to be applied to various fields. It was Smith (Smith, 2008), who was the first to
consider, in 2008, the use of copulas in SFM, relaxing the “traditional” independence
assumption on error components.

The “justifications” of the assumptions maintained in the literature of SFA prior to 2000,
see (Kumbhakar and Knox Lovell, 2000), p. 74, namely, (i) V is N(0,s 2), (ii) U is half normal
and (iii)U andV are independent of each other and of the regressors, are as follows:

� is “conventional!”;
� “plausible”; and
� The independence of U, V seems “innocuous” (harmless, not controversial)!.
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Recall that assumptions maintained in empirical research are responsible for the credibility
of its results. Let’s examine the assumption (3). Honestly speaking, is (3) innocuous? First, as
stated above, we are interested in knowing the distribution of V – U and from (1) and (2), all
we need is the joint distribution of (U, V). Second, as also mentioned above, given the
marginals F, G, is it a “difficult” exercise to find a joint distribution H of (U, V)? Yes, it is. In
fact, there are lots of possible “solutions,” as we know now from Sklar’s theory of copulas.
Assuming (3) provides one simple solution! But, for the credibility of “statistical science,”
any assumption must be justified. Smith in (Smith, 2008) did an excellent job by questioning
(3) and replaced it by a copula model exhibiting correlated error components in SFM; see
also (Amsler et al., 2019).

How to “find out” whether an assumption like (3) is plausible or justifiable? Well, in
general, a model assumption is about the “behavior” of the phenomenon under study. As
such, we could use available data to check whether a proposed assumption “captures” the
behavior it was proposed to capture! It is a data-driven approach, as it should be. Smith
(Smith, 2008) said it precisely “allowing the data the opportunity to determine the adequacy
of the independence assumption.”

A general approach to SFM with correlated error components, e.g. in a linear model
Y =X0u þ V�U in which U, V are not independent, is using copulas ((Durante and Sempi,
2016))) to model the dependence between U and V. Of course, the approach is data-driven.
Again, see, e.g. (Smith, 2008) and (Amsler et al., 2019), for illustrations.

Remark.As the main tool in econometrics seems to be regression, it should be pointed out
that regression analysis cannot isolate cause and effect (i.e. correlation does not tell us how
andwhy certain phenomena have occurred). We also need a causal inference theory.

4. Estimation by the method of sieves
The linear regression model in SFA is “interesting” as it presents a typical situation where,
in one hand, copula modeling is a mandate and on the other hand, maximum likelihood
estimation (MLE) by the method of sieves should be used, both are somewhat unfamiliar to
statisticians and econometricians. Note that to make the econometric analysis more credible
(i.e. fewer model assumptions maintained to make the statistical analysis closer to realities),
classical parametric estimation is extended to semiparametric, to semi-non-parametric and
to nonparametric estimation. The sieves method is a “non-standard” nonparametric
estimation, invented by U. Grenander in 1981 (Grenander, 1981), followed immediately by
(Geman and Hwang, 1982) and (Nguyen and Pham, 1982) in 1982. It took quite some time for
econometricians to appreciate its usefulness, not only in general semi-nonparametric
estimation (Chen, 2007; Chen and Pouzo, 2015)) but also in causal inference with regression
discontinuity design (RDD), e.g. (Davezies and Le Barbanchon, 2017). Well, it sounds
familiar: while the notion of copulas was discovered by abe Sklar in 1959, it was dormant
until 1990 for econometricians to be aware of it and from that time on, “copulas are
everywhere!” The same phenomenon happened to the concept of RDD, considered in
(Thistlewaite and Campbell, 1960), which stayed dormant also until 1990 and from that year
on, RDD is everywhere in causal inference!

Traditionally, when we wish to predict a random variableY from a “chosen” collection of
covariates (variables affecting Y), a vector X = (X1, X2, . . ., Xk), we seek the best predictor
W(X) in the sense that its mean squared error (MSE) is the smallest, where MSE(W(X)) = E
[W(X)� Y]2. It is a theorem that our best predictor, in the MSE sense, is E(YjX). The process
of estimatingE(YjX) from data is termed predictive modeling.

Remark. If we are interested in asking another question, e.g. “if we intervene on the
covariate Xj (say, increasing by an amount @Xj), what will happen to Y?” Then we are not
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doing predictive modeling, as what we seek is the partial derivative @E Y jXð Þ
@Xj

and not E(YjX).
We are doing causal estimation.

Traditionally (again), rather than addressing the estimation of E(YjX) nonparametrically
(which would be more “credible”), people proceed parametrically by “considering” a linear
model for E(YjX), namely, E(YjX) = X0u (justifying as a good approximation). Then the
problem is the estimation of the (finitely dimensional) parameter u 2 Rk. The associated
model for the Data Generating Process (DGP) is Y = X0u þ « with the “ideal condition”
E(« jX) = 0 and a “natural” assumption that « is a N(0,s 2) random variable. Doing so we
have a point identified problem followed by the standardMLE estimation method.

Suppose we care about credible statistics (!)while keeping E(« jX) = 0, we leave the
density f of the error term « unspecified. Then we are facing a semiparametric estimation
problem, in which, the parameter of interest u is finitely dimensional, whereas the infinitely
dimensional f is a nuisance parameter. How to estimate u in this setting? Is it still possible to
use MLE? As we will see, the answer is yes if we apply Grenander’smethod of sieves to MLE
(Grenander, 1981), see also (Geman and Hwang, 1982).

More generally, suppose we want to estimate E(YjX = x) by estimating the conditional
distribution ofY given X (in a non-linear model). One framework for this problem is this. Let
(X, Y) be a random vector. The joint distribution function H of (X, Y) is related to the
marginal distributions F, G of X, Y, respectively, by H(x,y) = C(F(x), G(y)) where C is a
copula. It boils down to estimatingHwhich can be breaking down into two cases:

(1) Specifying parametrically F and G and leave C unspecified;
(2) Specifying parametrically C and leave F and G both unspecified.

The above estimation problems can be carried out by using the method of sieves; see (Chen
et al., 2004) for (2), (Panchenko and Prokhorov, 2016) for (1).

Remark. Another situation where copula modeling appears naturally is the (James
Heckman) sample selection model. Sieve MLE is applicable too, see e.g. (Schwiebert, 2003).

Essentially, Grenander’s method of sieves is a method for implementing standard MLE
for estimating finitely dimensional parameters when facing infinitely dimensional
parameters. It is known that MLE has difficulties in the infinite-dimensional case, as the
maximum likelihood solution is generally not attained or is not consistent. To handle these
difficulties, the method of sieves was invented by U. Grenander in 1981 in his “abstract
inference.” In this method, for each sample size, a sieve (a suitable subset of the parameter
space) is chosen. The likelihood function is then maximized over the sieves yielding a
sequence of estimators. The crucial point is the choice of appropriate sieves so that, as the
sample sizes increase, the sequence of sieve estimators is consistent. When the infinitely
dimensional parameter space is a Hilbert space (e.g. the Sobolev space of copulas), a
sequence of sieves can be chosen simply as finitely dimensional subspaces of it. The
restricted MLE on these sieves is consistent and asymptotically normal provided that the
dimensions of the sieves grow not too fast with respect to the sample size. This is illustrated
in (Nguyen and Pham, 1982) which we reproduce here a bit.

Consider a “general” form of a standard linear regression model with Gaussian noise (a
nonstationary diffusion model):

dX tð Þ ¼ u tð ÞX tð Þdt þ dW tð Þ ; X 0ð Þ ¼ xo

where xo is deterministic,W(t) is a Brownian motion with E[dW(t)]2 = s 2dt and u (.) [ L2([0,
T], dt), [0,T] being the time interval of observation of the process.
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The problem is the estimation of the function u (.) on [0,T], a functional parameter, where
the data is a sample of Xi(.), i = 1, 2, . . ., n of trajectories of X(t) on [0,T]. This is a “functional
data” (Ramsay and Silverman (2002), e.g. interpolated panel data, or, as in machine learning,
a “data point” is not only high dimensional but also could be infinitely dimensional, such as
a curve in the plane.

As sieves, we choose an increasing sequence Sn of subspaces of L
2([0, T], dt), with finite

dimension dn, such that [n�1Sn is dense in L
2([0,T], dt), as follows. Let fj, j� 1 be a sequence

of independent elements of L2([0, T], dt), with f1, f2, . . ., fn forming a basis of Sn, for all n.

Then for u (.) [ Sn, we have u :ð Þ ¼
Xn
j¼1

u jfj :ð Þ.

We maximize the log-likelihood function Ln(u ) on each Sn, where, for
u :ð Þ 2 Sn; Ln uð Þ ¼

Xn
i¼1

(
1
s 2

ðT
0

Xdn
j¼1

u jfj tð Þ
2
4

3
5Xi tð ÞdXi tð Þ � 1

2s 2

ðT
0

Xdn
j¼1

u jfj tð Þ
2
4

3
5
2

X2
i tð Þdt

)

Then, under the conditions, as n!1, dn !1 and d2n
n ! 0, the sequence of restricted MLE

possesses desirable asymptotic properties. For details, see Nguyen and Pham (1982).
Remark. Note that the construction of sieves above is similar, in spirit, to the technique of

projections (or of orthogonal functions) in nonparametric density estimation. Here, our
parameter of interest is the infinitely dimensional u (.) which is “nonparametric” and we
estimate it “parametrically” in the sense that an estimator of u (.) is a sequence of finitely
dimensional (statistical) functions. Thus, by “nonparametric estimation” we mean the
problem of estimating a nonparametric parameter (an infinitely dimensional object) and not
necessarily “nonparametric estimators” per se! i.e. a nonparametric estimator of a
nonparametric parameter could be parametric!

Now the situation in SFA is different. With the notation in previous Sections, the error
components U, V are not observable, i.e. in searching for their marginals or copula, we are
not really facing an estimation problem per se.

The copula model in SFA, as initiated by Smith in (Smith, 2008), aims at extending the
independence assumption on error components, while keeping other seemingly “plausible”
assumptions, namely, parametric forms of marginal distributions Fa, Gb . Given data from a
linear regression model, the only thing to do (to study technology efficiency) is to choose an
“appropriate” copula C to form the joint distribution H(u,v) = C(Fa(u), Gb (v)) of (U, V), from
which the distribution of the error term « =V�U can be derived. Thus, the crucial question
is: How to choose C? The problem is somewhat delicate here, as (U, V) is not observable
(otherwise, the choice problem can be treated as a copula estimation problem). The choice
procedure in (Smith, 2008) is simple. On the one hand, C is chosen as a parametric copula Cg

and on the other hand, that choice is based upon dependence coverage considerations in the
theory of copulas. Together with parametric forms of the marginals, the whole setting is a
parametric estimation problem with parameters (u , a, b , g ) which can be estimated by
MLE from the SFMY=X0u þV�U.

To “improve” upon this fully parametric setting, say, while the marginals Fa, Gb are
specified parametrically, the copula C is left unspecified, i.e. just a member the space of
bivariate copulas C. The finitely dimensional parameter of interest is (u , a, b ) [ X and the
nuisance parameter is infinitely dimensional C 2 C. We are facing a semi-parametric
estimation problem in the structural model Y =X0u þ V �U, with data (Xi,Yi), i = 1, 2, . . .,
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n. The likelihood function is maximized over X� C. Now, as C is a subset of a Hilbert space
(the Sobolev spaceWI ;2 I2;R

� �
, where I = [0,1], see Siburg and Stoimenov (2008), sieve MLE

can be used as in (Nguyen and Pham, 1982). as above.

5. Causality analysis in stochastic frontier models
Moving from association inference to causation inference is a natural path. In the context of
SFA, this is not only because SFM is a regression model but also by its subject matter, it is
useful to do so, for example, modeling determinants affecting production inefficiency. So far,
the literature on causal inference for SFM seems limited, especially with respect to the use of
regression discontinuity designs (RDD); see, however, (Johnes and Tsionas, 2019).

In this Section, we elaborate and emphasize the now popular RDD in general causal
inference practices with obvious possible applications to SFA. On the other hand, as SFM
are regression models, regularizations in various forms for covariate selection and
appropriate inferences could be considered.

Essentially, causal inference is about detecting causal effects of, say, a “treatment”
(intervention) on some variables of interest (“outcome”). It consists of choosing two groups
in a population of units, with one group subjected to the treatment while the other group is
not, for comparison. When the golden standard of random experiments (for choosing two
“equivalent” groups) cannot be used, for various (social) reasons, researchers now turn to a
popular designmethod, called regression discontinuity design (RDD).

The RDD was initiated in (Thistlewaite and Campbell, 1960) back in 1960. The idea is to
replace a random experiment by a “design” which provides a group where units in that
group are somewhat “similar” (equivalent), from which, a “tie-breaking” randomization
assignment is applied to form two desired groups for comparison (see the Foreword of D.T.
Campbell to Trochim’s book (Trochim, 1984)). The design is illustrated by a real problem.
To give scholarships to potentially good seniors so that they perform better in their
graduate studies, a university gives an examination (a “pretest”) to the seniors at the end of
their senior year to determine which students deserve the awards. For this purpose, a cutoff
score (threshold) is chosen: If Xi denotes the score of student i in this pretest and the chosen
cutting point is xo, then i will be awarded the scholarship iff Xi � xo. Call X the score or
“running variable” of the design. Each student (a unit in a population I) has a score (revealed
after the pretest). To find out whether or not the scholarship award (a “treatment,”
intervention) has a positive effect, several years later, a “post-test” (with score Y) will be
given to all units (in two groups). So a design consists of (X, xo, Y). It is called a “regression,”
as we are going to “regress” Y on X (say, by linear regression) for comparison; there could
have a “jump” (discontinuity) from the line on the left of the threshold xo to the line on its
right side. That was why the name of the design is “regression discontinuity.” Finally, given
the threshold xo, if the assignment rule is applied “seriously,” i.e. unit i is selected for an
award if and only if Xi � xo, then the design is termed “sharp,” leading to a “sharp RDD.” If
the assignment rule is somewhat “elastic” (or flexible) in the sense that for scores Xi around
xo (a neighborhood N(xo) of the cutoff point), below or above, some additional procedures
will be used to classify them, e.g. viewing them as equivalent, do a tie-break such as classify
them into two groups at random or seeking extra information (e.g. interviews,
recommendation letters, etc [. . .].). In this case, the RDD is termed fuzzy RDD. Thus, sharp or
fuzzy RDD is about howwe apply the assignment rule around the cutoff point.

Remark. Fuzzy RDDwas first termed in (Campbell, 1969); see also, (Trochim, 1984), p. 55.
The adjective “fuzzy” is used only to mean that the assignment rule is not sharp (in a specific
way). It is not related to Zadeh’s notion of fuzzy sets in 1965, recalling that a fuzzy set is a
“generalized set” whose elements can have partial membership degrees, e.g. a coalition of
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players in a (coalitional) game where partial memberships are allowed; see, e.g. (Nguyen
et al., 2019) for Zadeh’s theory of fuzzy sets and logic.

However, this idea of “fuzzy assignments” of units near the cutoff point is similar
to a situation in Statistical Quality Control where observations near the boundaries
of a control chart should be treated with care, and fuzzy set techniques could be
used.

Now, recall that causal inference concerns “what” would happen to an “outcome”
(response) Y as a result of a “treatment” (or “intervention”). More specifically, it concerns the
comparison of treatment with something else, say “no treatment” or “control.” The question
is: how to figure out whether there is a causal effect?

Suppose we have a sample (random or not) of size n of units from a population U to spit
into two groups t (treatment) and c (control). Unlike associational inference, each unit i now
have two “potential outcomes”: Y1i and Y0i, representing the outcome on unit i if it is
exposed to t and c, respectively.

The individual treatment effect is obviously the difference Y1i – Y0i. However, we cannot
observe bothY 1i andY 0i, but only observe one of them.

When i [ t, we may wish to substitute to the unobserved Y 0i by some j [ c which is
“similar” to i, say, in terms of other characteristics. This is possible if the observation study
is can be conducted by a random process, which tends to “balance out” similarity so that
counterfactuals can be found.

If we let D be the assignment rule: Di = 1 or 0 according to i [ t or i [ c, then the
“regression” observed model is:

Yi ¼ Y0i þ Y1i � Y0ið ÞDi

RDD provides a design for observational studies, which allow us to view, at least, locally,
the observational studies as the “golden standard design” of random experiments. Here the
assignment ruleD is not random and is not under the control of the evaluator:Di ¼ 1 Xi�xoð Þ.

In such a situation, how to “identify” the treatment effect? and how to estimate it? The
observedmodel is:

Yi ¼ Y0i þ Y1i � Y0ið ÞDi

If we plot the data, then we see two pictures:
(1) Plotting Xi versus Di: there is a “sharp” jump of the assignment at the cutoff point

xo:P(Di = 1jXi) jumps from 0 to 1 at xo,
(2) Plotting Xi versus Yi: there is a discontinuity of E(YijXi) at xo which could be used

to determine a causal effect.

Specifically, the question is: How to estimate the causal effect E(Y1 – Y0) from data (Di,Yi:i =
1, . . ., n)?

Let ai=Y0i and bi=Y1i –Y0i, then our observed model isYi= aiþbiDi.
Consider first the “sharp” design where the assignment rule D ¼ 1 X�xoð Þ where X is a

concomitant variable.
The population parameter bi is said to be (nonparametrically) “(point) identifiable” if we

can express it uniquely in an “estimable” fashion. For example, if the treatment effect is
constant throughout the population, i.e. when bi =b for all i, then it can be shown that the
condition “x ! E(Y0ijXi = x) is continuous at xo” is sufficient to identify b as b =Yþ�Y�

where
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Yþ ¼ lim
x!xoþ

E YijXi ¼ xð Þ . . . . . . ; Y�¼ lim
x!xo�

E Y i jX i¼ x
� �

When the treatment effect varies across units, additional conditions are needed for (point)
identification. For example, if “x! E(Y0ijXi = x) is continuous at xo,” “x! E(Y1i – Y0i j Xi =
x) is continuous at xo,” and “Di is independent of Y1i – Y0i conditional on Xi near xo,” then it
can be shown that:

E bijXi ¼ xoð Þ ¼ Yþ � Y�

Note that, for fuzzy RDD, limx!xoþE DijXi ¼ xoð Þ � limx!xo�E DijXi ¼ xoð Þ is different than
zero and we have:

E bijXi ¼ xoð Þ ¼ Yþ � Y�ð Þ= Dþ � D�ð Þ

Under appropriate conditions of the RDD, the treatment effect can be estimated,
locally around the cutoff point from observed data, just like in a random
experiment.

Clearly, the estimate of the treatment effect near the cutoff point is obtained as a
plug-in estimator. Specifically, it suffices to estimate Yþ, Y�, Dþ, D�. Now observe that
these parameters are conditional means. As such, the nonparametric regression method
is used for estimation. However, besides point estimators, the problem of variance
estimation for confidence interval estimation is complicated. A novel nonparametric
method for confidence intervals, known as Empirical Likelihood (EL) is, therefore, called
for, as this method avoids variance estimation and provides confidence regions based
solely on data.

This nonparametric method can be used in a variety of situations, especially for
parameters in moment conditionmodels.

Consider the simplest (standard) setting: let X1, X2, . . ., Xn be i.i.d. drawn from a
population X with unknown distribution function Fo. As the (nonparametric) parameter
space for Fo is the set (or a subset) F of all distribution functions, a likelihood of F 2 F ,
given the observations is:

L FjX1;X2; . . . ;Xnð Þ ¼
Yn
i¼1

F Xið Þ � F Xi�ð Þ½ � ¼
Yn
i¼1

pi

This likelihood is “consistent”with the fact that the empirical distribution function:

Fn xð Þ ¼ 1
n

Xn
i¼1

1 Xi # xð Þ

maximizes it. Note that:

L FnjX1;X2; . . . ;Xnð Þ ¼ 1
n

� �n

so that the likelihood ratio:
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r Fð Þ ¼ L Fð Þ
L Fnð Þ ¼

Yn
i¼1

npi

Suppose our parameter of interest is u =T(F). Then the profile likelihood is:

R uð Þ ¼ supfr Fð Þ : F 2 F \ T�1 uð Þg

and the associated confidence interval for u o is of the form {u : R(u )� c}.
This concept of (nonparametric) likelihood is particularly useful for setting up natural

confidence intervals in moment condition models (frequently encountered in econometrics)
and in quantile regression.
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Appendix
Empirical copulas
A research report by R. Johnson, J. Evans and D. Green, of the USDA, published in 1999, entitled
“some bivariate distributions for modeling the strength properties of lumber” [Research paper FPL-
RP-575 (Google)] is a typical example of the need to have a bivariate distribution having specified
marginals. This is so, as, single strength property can be easily modeled with univariate
distributions, but not the overall strength properties of the lumber.

The goal of that paper is to “review major techniques for obtaining bivariate distributions” and
“to pick a promising bivariate distribution” for applications in agriculture.

The review of “major techniques for obtaining bivariate distributions” is interesting on two
counts. First, it reminds us of the efforts to solve this essential problem, from “transformation
methods,” “Farlie-Gumbel-Morgenstern-families” to Marshall-Olkin’s mixed models (1988). The
second count is amazing. Total ignorance of the existence of copulas or more precisely, Maurice
Frechet’s problem! When searching for a bivariate distribution, say with marginals as univariate
Weibull distributions (for reliability), you see statements such as “because of the dearth of
bivariate distributions with appropriate marginal distributions, no good candidates are available
at this time,” and “the only viable candidate distributions appear to be the bivariate Weibull.”

We review here “statistical inference about copulas” by viewing the copula as a “parameter” of a
joint distribution.

If we focus on the practical problem of obtaining a copula C from observed data to obtain the
joint distribution H of (X, Y), as well as modeling the dependence between X and Y, then situations
are as follows.

Depending on situations, C could be obtained by one of the following ways:
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� by estimation;
� by some selection rules.

In any case, we need to figure out, first, how to relate our “parameter” C to the observed data? In other
words, what the data tell us about C? Well:

C u; vð Þ ¼ P X#F�1 uð Þ;Y#G�1 vð Þ
� �

¼ H F�1 uð Þ;G�1 vð Þ
� �

The data (Xi,Yi), i = 1, 2, . . ., n came from H(.,.), so that H, F, G can be estimated empirically, say by
Hn, Fn, Gn and F�1

n ;G�1
n , so that, C(u, v) can be estimated (pointwise) accordingly.

As far as estimation is concerned, procedures will depend on two main things:

(1) Data: Recall that C is the joint distribution of (U, V) with uniform marginals on [0,1]. As
U = F(X) and V = G(Y), the “data” for C is (F(Xi), G(Yi)), i = 1, 2, . . ., n. However, F, G
are unknown, so that these “data” are not observable. If F, G are estimated by Fn, Gn,
then the observed “pseudo- data” is (Fn(Xi), Gn(Yi)), i = 1, 2, . . ., n. What are the
properties of this pseudo-data?

(2) Estimation approaches:
� Parametric: when it is “appropriate” to assume that both the marginals and the

copula are parametric;
� Semi-parametric: when only the copula is parametric and not the marginals; and
� Nonparametric: when marginals and copula are arbitrary.

Modeling dependence structures. When X and Y are independent, their “dependence” structure is
“independence” which is captured by the product copula CI(u,v) = uv. When they are not independent,
i.e. their copula C= CI, we face an infinity of types of dependence between them! All we know is that
each functional form of C represents one type of dependence structure. A dependence structure is a
“way” that the variables depend on each other. For example, the dependence structure is linear when
Y = aX þ b (a,s.), a = 0, which is expressed as a functional form on the variables. This functional
form of dependence is represented by the copula Cþ(u,v) = min{u,v} = u ^ v if a> 0 and by C�(u,v) =
max{uþ v� 1,0} if a < 0. In other words, the linear dependence structure is represented by the
subsets of copulas fCþ;C�g � C (the infinitely dimensional space of all bivariate copulas), noting
that a copula is simply a (bivariate) distribution with uniform marginals on [0,1].

The copula Cþ by itself represents the specific form of dependence called comonotonicity: X and
Y “depend” on each other in the sense that they move up or down simultaneously, i.e. the set {(X(v ),
Y(v )):v [ X}is a chain in R2.

The copula C– by itself represents the dependence structure known a counter-monotonicity:
(X,Y) = d (w (Z),c (Z)) with w strictly increasing and c strictly decreasing (or vice versa).

Variables can exhibit some form of dependence such as they are more likely to be
simultaneously large (or small) than if they were independent. This notion of dependence is termed
positive quadrant dependence (PQD). Translating this description of dependence into mathematics,
we have that X and Y are PQD iff H(x,y) � F(x)G(y) for all x; yð Þ 2 R2, which is equivalent to C � CI.
Thus, the subset fC 2 C : C � CIg characterizes PQD.

Why we are worried about various types of dependence structures? Typically, say, in econometrics
where we are often interested in studying relationships among variables, dependence plays an
essential role. For example, premium calculations in actuarial science are based upon dependence
structures of insurance claims; computations of financial risks of investment portfolios, say, via Tail
Value-at-Risk, require the dependence structure of the assets in the portfolio under study.
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Theoretically speaking, dependence structures can be specified if we know the joint distribution of
variables involved. Typically, we only, at best, have information on marginal distributions. Thus, we
face the modeling of the dependence structure by itself.

Parametric estimation
Maximum likelihood estimation. We consider first the simplest setting of estimation, namely,
parametric setting in which the joint distribution is linked to its marginals and copula by:

Hu x; yð Þ ¼ Cg Fa xð Þ;Gb yð Þ� �
for all x; yð Þ 2 R2; u ¼ a; b ; gð Þ 2 U � Rk.

Note that the separation of copula and marginals from the joint distribution is very important
for modeling: We can say, first model the marginals (without worrying about their copula), of course,
based on evidence from observed data, for example:

Fa xð Þ ¼ expf�xag1 0;1½ Þ xð Þ

which is a Frechet distribution (heavy-tailed) with a< 0 and:

Gb yð Þ ¼ 1� e�b yð Þ1 0;1ð Þ yð Þ

which is an exponential distribution, with b > 0. Then (independently of the marginals), the copula
could be parametrized by, say:

Cg u; vð Þ ¼ uvþ guv 1� uð Þ 1� vð Þ

for g [ [�1,1]. Thus, u ¼ a; b ; gð Þ 2 H ¼ �1; 0ð Þ � 0;1ð Þ � �1; 1½ � � R3.
Let (Xi,Yi), i = 1, 2, . . ., n be a random sample drawn from (X, Y). We wish to use these

observations to estimate the dependence structure of (X, Y), which is captured by its true, unknown
copula C [ {Cg}.

Remark. To relate C to the data, we note that:

C u; vð Þ ¼ H F�1 uð Þ;G�1 vð Þ
� �

¼ P X#F�1 uð Þ;Y#G�1 vð Þ
� �

¼ P F Xð Þ#u;G Yð Þ# v
� �

or, when F and G are continuous, U =F(X), V =G(Y) are uniformly distributed on [0,1], so that their
joint distribution C. As such, the observed data (Xi,Yi), i = 1, 2, . . ., n is “related” to C via the
unobserved data (F(Xi), G(Yi)), i = 1, 2, . . ., n, like F, G are unknown.

However, by looking at the joint distribution as a whole, we can write down the likelihood
function of the parameter u when observing (Xi,Yi), i = 1, 2, . . ., n, assuming, of course, their copula C
is absolutely continuous, namely:

Ln u j Xi;Yið Þ; i ¼ 1; 2; . . . ; n
� � ¼ Ln uð Þ ¼

Yn
i¼1

hu Xi;Yið Þ

where
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hu x; yð Þ ¼ @2Hu x; yð Þ
@x@y

¼ @2Cg Fa xð Þ;Gb yð Þ� �
@x@y

¼ fa xð Þgb yð Þc Fa xð Þ;Gb yð Þ� �
where fa xð Þ ¼ dFa xð Þ

dx ; ga xð Þ ¼ dGa xð Þ
dx and cg u; vð Þ ¼ @2Cg u;vð Þ

@u@v .
Then, formally, the MLE of u is obtained by maximizing Ln(u ) over H. This “exact” MLE aims

at simultaneouslymaximizing the parameter vector u = (a,b ,g ).
Note that:

logLn uð Þ ¼ log
Yn
i¼1

fa Xið Þgb Yið Þc Fa Xið Þ;Gb Yið Þ� �
¼

Xn
i¼1

log c Fa Xið Þ;Gb Yið Þ� �þXn
i¼1

log fa Xið Þ þ
Xn
i¼1

log gb Yið Þ

in which the first term is the log-likelihood due to the dependence structure, whereas the sum of the
last two terms is the log-likelihood due to the marginals.

Remark.
(1) A copula C is a joint (bivariate) distribution function. As such, it generates a probability

measure, denoted as dC, on B R2ð Þ. Saying that C is absolutely continuous, we simply mean that dC is

absolutely continuous with respect to Lebesgue measure dx� dy on R2, i.e. dC u; vð Þ ¼ @2C u;vð Þ
@u@v

h i
dudv.

(2) When F and G are continuous, C is the joint distribution of the uniform marginals U =F(X),
V =G(Y). However, as F and G are unknown, the values (F(Xi), G(Yi)), i = 1, 2, . . ., n are not
observable, so that we do not have data from (U, V) to estimate their joint distribution C by standard
methods. If F and G are estimated from their data Xi, i = 1, 2, . . ., n and Yi, i = 1, 2,. . .n (which are
separately random samples), say, by Fn and Gn, then (Fn(Xi), Gn(Yi)), i = 1, 2, . . ., n are observable,
called the pseudo-observations. Then, formally, we can consider estimating g by MLE based on the
copula density cg(.,.) and the pseudo-observations: Maximizing:

Yn
i¼1

cg Fn Xið Þ;Gn Yið Þð Þ

over the parameter space of g . Such an estimator of g is referred to as an omnibus estimator (a bus
for all!). Of course, the statistical properties of such estimators should be examined.

Important note on pseudo-observations. If F and G are continuous and known, then (F(Xi), G(Yi)),
i = 1, 2, . . ., n are observable and are i.i.d. (F(X), G(Y)) which has C as its joint distribution. In other
words, in this case, (F(Xi), G(Yi)), i = 1,2, . . ., n is viewed as a random sample drawn from the
copula C.

When F and G are unknown, the pseudo-observations (Fn(Xi), Gn(Yi)), i = 1, 2, . . ., n are not mutually
independent and (Fn(Xi), i = 1, 2, . . ., n and Gn(Yi)), i = 1, 2, . . ., n are only approximatively uniform. Thus,
any statistical inference based on pseudo-observations should take these features into account.

(3) Now observe that there are various measures of dependence, such as Kendall tau or
Spearman rho, which are functions of C, say l = d (C). So we might attempt to estimate l by, say, ln

and then, formally, derive an estimate for C by Cn = d �1(l n).
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For the Kandell tau:

t Cð Þ ¼ 1� 4
ð1
0

ð1
0

@C u; vð Þ
@u

@C u; vð Þ
@v

� �
dudv

and in particular, for Archimedean copulas:

t Cg

� � ¼ 1þ 4
ð1
0

ð1
0

wg tð Þ
w 0

g tð Þdt

Thus, in principle, we can (say, numerically!) solve this equation to obtain Cg .
Note that this approach is in fact nonparametric in nature, as we do not postulate any

parametric models. If we use Archimedean copulas, then we have a parametric model for the
copula, but leave unspecified the marginals (i.e. nonparametric): a situation like this is called
semiparametric.

Handy estimators of the Kendall tau are in fact available. As the (population) Kandell
tau is:

t X;Yð Þ ¼ t Cð Þ ¼ P X1 � X2ð Þ Y1 � Y2ð Þ > 0½ � � P X1 � X2ð Þ Y1 � Y2ð Þ < 0½ �

where (X1, Y1)(X2, Y2) are i.i.d. (X, Y), its empirical counterpart tn is obtained as follows.
Let a denote the number of pairs(Xi, Yi)(Xj, Yj) in the data set such that (Xi – Xj)(Yi � Yj)> 0 and

let b be the number of observation pairs such that (Xi – Xj)(Yi � Yj)< 0. Then:

tn ¼ a� b
n
2

� �

The above “exact” likelihood estimation procedure could be computationally difficult in view of
parameter dimension. A two-stage MLE could help. The following estimation procedure is called
inference functions for margins (IFM).

In view of an above remark, namely:

logLn uð Þ ¼
Xn
i¼1

log c Fa Xið Þ;Gb Yið Þ� �þXn
i¼1

logfa Xið Þ þ
Xn
i¼1

log gb Yið Þ

we could, in a first step, maximize
Xn
i¼1

log fa Xið Þ and
Xn
i¼1

log gb Yið Þ, over parameter spaces for a and

b , respectively, to obtain MLE an, b n and then, in a second step, maximize
Xn
i¼1

log c Fan Xið Þ;�
Gbn Yið ÞÞ over the parameter space of g , to obtain an estimator gn and taking u n = (an, b n, gn) as
the estimator of u .

While in general, MLEs in the two above procedures are not the same, although they enjoy
similar asymptotic statistical properties, under regular conditions, of course. The IFM method could
simplify computations.
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Semiparametric estimation
The setting of semiparametric estimation of copulas is this. The joint distribution H of (X, Y) is
partially parametric. Specifically, the marginal distributions F and G are left unspecified (i.e.
nonparametric), whereas the copula C is parametric, say, Cg ; g 2 C � Rk, so that:

H x; yð Þ ¼ Cg F xð Þ;G yð Þ� �
Note that the “parameter” of H is (g , F, G) where F and G are univariate distribution functions.

As F and G are infinitely dimensional, MLE cannot be used. To use MLE, we need the
likelihood, with observed data, in a finitely dimensional setting. As (F(Xi), G(Yi)), i = 1, 2, . . ., n are not
observable, we need their “estimates.” That could be achieved by first estimating F, G,
nonparametrically, say by Fn, Gn, then use the pseudo-observations (Fn(Xi), Gn(Yi)), i = 1, 2, . . ., n to
form an approximate likelihood function for the finitely dimensional parameter g . More specifically,
under the assumption that both F and G are continuous, the copula Cg is a bivariate distribution with
pseudo-observations (Fn(Xi), Gn(Yi)), i = 1, 2, . . ., n. Suppose, in addition, that Cg is absolutely
continuous, we can consider the pseudo-log likelihood function of g when we observed (Fn(Xi), Gn(Yi)),
i = 1, 2, . . ., n, as:

logLn gð Þ ¼
Xn
i¼1

log cg Fn Xið Þ;Gn Yið Þð Þ

so that, an estimator of g could be:

gn ¼ argMaxg
Xn
i¼1

log cg Fn Xið Þ;Gn Yið Þð Þ

Note that the nonparametric estimation of F, based on the random sample Xi, i = 1, 2, . . ., n is the
usual empirical distribution:

Fn xð Þ ¼ 1
n

Xn
i¼1

1 Xi # xð Þ xð Þ

Nonparametric estimation
Generalities on nonparametric estimation. When we face an unknown population parameter,

finitely or infinitely dimensional, we should try to estimate it in a setting as general as possible, to be
as close as possible to real situations and should not “impose” conditions, just for the sake of easy
computations! Of course, careful data analyzes and domain contexts sometimes do suggest simpler
models, such as parametric or semiparametric ones.

In the absence of convincing evidence to consider the two above models, we should try to face
the problem as it is, namely, a nonparametric setting.

Let (Xi, Yi), i = 1, 2, . . ., n be i.i.d. (X, Y). Without any additional information, we could simply
use the empirical counterparts as estimators for population parameters. For example, the value F(x)
of the (marginal) distribution function of X is: for fixed x 2 R; F xð Þ ¼ P X# xð Þ. Its empirical
counterpart is the ratio of the observations Xi, i = 1, 2, . . ., nwhich are less than x over n, i.e.
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Fn x;Xi; i ¼ 1; 2; . . . nð Þ ¼ 1
n
#fi : Xi # xg ¼ 1

n

Xn
i¼1

1 �1;xð � Xið Þ

In fact, the justification of using the empirical distribution function Fn(.) to estimate the unknown
distribution function F(.), nonparametrically, is deeper than what we mentioned above. Specifically,
as n!1:

sup
x2R

jFn xð Þ � F xð Þj!a:s:0

in other words, Fn(x) converges to F(x) uniformly (in x), almost surely. This convergence means that,
for any desired specified error level « > 0, we have jFn(x) � F(x)j # « , with probability one, when
n � N(« ) (depending only on « ) and that for all x 2 R. This is important for applications, as the
uniform convergence tells us that we can decide on how large the sample size should be, once for all x.

How large is large? It is a matter of approximation accuracy. We need the rate of convergence!
For example, if we wish to approximate F by Fn within, say, « = 0.0001, i.e. jFn(.) � F(.)j # « , then,
knowing its rate of convergence, we infer the minimum n which is considered as large.

Note also that while Fn(x) is a pointwise estimator of F(x), the function Fn(.) is a global estimator
of F, i.e. an estimator of the function F(.). To measure the closeness of Fn to F, we use the
Kolmogorov-Smirnov (random) distance:

Dn ¼ sup
x2R

jFn xð Þ � F xð Þj

The Glivenko-Cantelli theorem asserts that Fn(.) is strongly consistent.
The situation is similar for the joint distribution function H of (X, Y). As H(x,y) = P(X # x,

Y# y), its empirical counterpart is:

Hn x; yð Þ ¼ 1
n
#fi : Xi # x;Yi # yg ¼ 1

n

Xn
i¼1

1 �1;xð �� �1;yð � Xi;Yið Þ

While empirical distribution functions provide reasonable estimators, they are not smooth ones. One
way to obtain smooth estimators is to use the method of kernels that we will now outline, first as a
method for estimating probability density functions.

The method of the kernel for density estimation. The model is F , the class of all absolutely
continuous distribution functions. Our random variable of interest X has a distribution function F
known only to belong to F . There are many different ways to estimate f(x) = dF(x)/dx. Here I will
only discuss the most popular one, namely, the kernel method.

Specifically, while f(x) does not have a probabilistic meaning, it is so “asymptotically.” Indeed,
we have:

f xð Þ ¼ lim
h!0

F xþ hð Þ � F x� hð Þ� �
=2h

¼ lim
h!0

P x� h < X# xþ hð Þ=2h

Now the sample counterpart of P(x – h<X# xþ h)/2h is:
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fn xð Þ ¼ 1=2nhð Þ#fXi 2 x� h; xþ hð �g

which is the proportion of the observations falling into the interval (x� h, xþ h].
Now, observe that fn(x) can be also written as:

1=nhð Þ
Xn
i¼1

K x� Xið Þ=h� �

where the kernel K is:

K xð Þ ¼ 1=2 if x 2 �1; 1½ Þ
0 otherwise

(

This kernel estimator is called the naive estimator of f(x)
The kernel is also referred to as a “window” (open around the point x).
The above “naive” kernel is a uniform kernel with weights (degrees of importance) 1/2 assigned

to every observation Xi in the window around x. This weight assignment is not sufficiently efficient
in the sense that observations closer to x should receive higher weights than those far away. To
achieve this, we could modify the kernel accordingly. For example, a kernel of the form:

K xð Þ ¼ 3=4ð Þ 1� x2ð Þ1 jxj# 1ð Þ

could reflect an appropriate weight assignment.In any case, the general form for kernel density
estimators should be:

fn xð Þ ¼ 1=nhð Þ
Xn
i¼1

K x� Xið Þ=h� �

for some choice of kernel K, i.e. K is a probability density function, i.e. K(.)� 0 and
ð1
�1

K xð Þdx ¼ 1.
Note that the naive kernel satisfies the conditions of a probability density function.

Now we have a general form for density estimators, we could proceed ahead to design them to
obtain “good” estimators. From the above form, we see clearly that estimators’ performance depends
on the design of the bandwidth h and kernel K.

Thus, from a practical viewpoint, the choice of the bandwidth h is crucial, as h controls the
smoothness of the estimator (just like a histogram). Also, as we will see, the smoothness of kernel
estimators depends on the properties of K.

Here is the analysis leading to the optimal design of density estimators.
1. Analysis of the bias. The bias of fn(x) is b(fn(x)) = Efn(x) � f(x). The mean squared error

(MSE) is:

E fn xð Þ � f xð Þ� �2 ¼ Var fnð Þ � b2 fn xð Þ� �
Assuming that f is sufficiently smooth, such as f00 exists, we get, as h! 0:

b fn xð Þ� � ¼ h2=n
� �

f
0 0 xð Þ

ð1
�1

y2K yð Þdyþ o h2ð Þ
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where o(h2) is a function such that lim
h!0

o h2ð Þ=h2 ¼ 0.

Thus, we need to choose K such that
ð1
�1

y2K yð Þdy < 1. On the other hand, to make h! 0, we

choose hn (the function of n) so that hn ! 0 when n!1.
Looking at the bias, we see that it is proportional to h2. Thus, to reduce bias, we should choose h

small. Also, the bias depends on f00(x), i.e. the curvature of f(.).
2. Analysis of the variance.We have, as nh!1:

Var fn xð Þ� � ¼ 1=nhð Þ
ð1
�1

K2 yð Þdyþ o 1=nhð Þ

The variance is proportional to (nh)�1. Thus, to reduce the variance, we should choose h large!

Also the variance increases with
ð1
�1

K2 yð Þdy: flat kernels should reduce the variance. Of course,

increase the sample size n reduce the variance.
How to balance the choice of h for reducing bias and variance? Note that increasing h will lower

the variance but increases the bias and vice versa.
A compromise is to minimize the MSE. Now:

MSE fn xð Þ� � ¼ h4=4
� �

f
0 0 xð Þ

h i2 ð1
�1

y2K yð Þdy
� �2

þ 1=nhð Þ
ð1
�1

K2 yð Þdy
� �

f xð Þ þ o 1=nhð Þ

as nh!1.
Thus, MSE(fn(x)) ! 0, as n ! 1 (i.e. fn(x) is MSE-consistent, and hence weakly consistent)

when hn ! 0 and nhn !1, as n!1.
The optimal choice of bandwidth is hn = n�1/5 and the convergence rate is n�4/5.
All of the above could give you a “flavor” of designing kernel estimators!
To summarize general results on asymptotic properties of kernel estimators, I list the following:

Under suitable choices of K as indicated above and suppose f continuous:
� fn(x) is asymptotically unbiased when hn !1, as n!1
� fn(x) is weakly consistent for f(x) provided hn ! 0 and nhn !1

Remark on methods of density estimation
The method of the kernel for density estimation is only one among a variety of other methods, such
as orthogonal functions, excess mass. It is a popular approach. We illustrate briefly the recent method
of excess mass which seems not to be well-known in econometrics.

This method has the advantage that we do not need to assume analytic conditions on f but only
some information about its shapes.

For each a� 0, a crossed section of f (say, in multivariate case) at level a is:

Aa fð Þ ¼ fx 2 Rd : f xð Þ � ag
A piece of information about the shape of f could be Aa 2 C, some specified class of geometric
objects, such as ellipsoids (e.g. multivariate normal).

Now observe that f can be recovered from the A
0
as as:

f xð Þ ¼
ð1
0
1Aa

xð Þda
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so that it suffices to estimate the sets Aa, a � 0 by some set-statistics Aa,n (i.e. some random set
statistics) and use the plug-in estimator:

fn xð Þ ¼
ð1
0
1Aa;n xð Þda

to obtain an estimator for f(x).
But of course, the question is how to obtain Aa,n from the sample X1, X2, . . ., Xn?
Let l (dx) denote the Lebesgue measure on Rd . Then:

dF � alð Þ Að Þ ¼
ð
A
f xð Þdx� a

ð
A
dx ¼ Ea Að Þ

is the excess mass of the set A at level a. Note that (dF – al ) is a signed measure.
Theorem. Aa maximizes Ea Að Þ over A 2 B Rdð Þ:
Proof. For each A 2 B Rdð Þ, write A ¼ A \ Aað Þ [ A \ Ac

a

� �
, where Ac

a is the set complement
of Aa. Then:

Ea Að Þ ¼
ð
A\Aa

f xð Þ � a
� �

dxþ
ð
A\Ac

a

f xð Þ � a
� �

dx

Now, on A \ Aa; f xð Þ � a � 0 so that:ð
A\Aa

f xð Þ � a
� �

dx#
ð
Aa

f xð Þ � a
� �

dx A \ Aa � Aað Þ

On A \ Ac
a; f xð Þ � a# 0. Thus:ð

A\Aa

f xð Þ � a
� �

dxþ
ð
A\Ac

a

f xð Þ � a
� �

dx#
ð
A\Aa

f xð Þ � a
� �

dx#Ea Að Þ

Just like MLE, this maximization result suggests a method for estimating Aa(f).
The empirical counterpart of Ea Að Þ is:

Ea;n Að Þ ¼ dFn � alð Þ Að Þ

Thus, a plausible estimator of the a-level set Aa(f) is the random set Aa,n maximizing Ea;n Að Þ over
A 2 C.

While the principle is simple, the rest is not!

Nonparametric regression
Let (Xi,Yi),i = 1, 2, . . ., n be a random sample from a bivariate distribution with joint density f(x, y).

The marginal density of X is:

fX xð Þ ¼
ð1
�1

f x; yð Þdy
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and the conditional density of Y given X = x is:

fY jX yjxð Þ ¼ f x; yð Þ=fX xð Þ

The conditional mean (or regression of Y on X) is:

r xð Þ ¼ E Y jX ¼ xð Þ ¼
ð1
�1

yfY jX yjxð Þdy ¼
ð1
�1

yf y; xð Þ=fX xð Þdy

Using kernel estimation for both densities f(x, y) and f(x), we arrive at the following.
The kernel estimator of f(x, y) is of the form:

fn x; yð Þ ¼ nh2n
� 	�1Xn

i¼1

K x� Xið Þ=hn; y� Yið Þ=hn
� �

and that of f(x) is:

f̂ n xð Þ ¼ nhnð Þ�1
Xn
i¼1

J x� Xið Þ=hn
� �

Note that f̂ n xð Þ ¼
ð1
�1

fn x; yð Þdy.

From the above a kernel estimator of r(x) is:

rn xð Þ ¼
ð1
�1

fn x; yð Þ=f̂ n xð Þdy

For simplicity, we can take:

K x; yð Þ ¼ J xð ÞJ yð Þ

and arrive at:

rn xð Þ ¼
Xn
i¼1

YiJ x� Xið Þ=hn
� �

=
Xn
i¼1

J x� Xið Þ=hn
� �

Nonparametric estimation of copulas
From a natural setting, nonparametric estimation of the copula C of (X, Y) from the observations (Xi,
Yi),i = 1, 2, . . ., n can be set up as follows.

As C(u,v) = H(F�1(u), G�1(v)), the empirical copula is:

Cn u; vð Þ ¼ Hn F�1
n uð Þ;G�1

n vð Þ
� 	

where Hn, Fn and Gn are empirical distributions and:
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F�1
n uð Þ ¼ inffx 2 R : Fn xð Þ � ug

Of course, good statistical properties of this nonparametric estimator should be established, e.g.
under regular conditions (i.e. analytic properties of the model giving rise to the observed data).

To obtain smooth estimators for C, one could use smooth versions of the above empirical
distributions, using, say, the kernel method. For example, we replace the empirical Hn by:

H	
n x; yð Þ ¼ 1

n

Xn
i¼1

K
x� Xi

an
;
y� Yi

an

� �

where K is some kernel and the sequence of bandwidths an properly chosen, such as lim
n!1an ¼ 0.

When the copula C is absolutely continuous, we can consider the estimation of its density

function c u; vð Þ ¼ @2C u;vð Þ
@u@v .

Now c(.,.) is a density with finite support [0,1]2 in R2 and we intend to estimate it (pointwise) by
using pseudo-observations (Fn(Xi), Gn(Yi)), i = 1, 2, . . ., n, where Fn,Gn are empirical distributions,
some care should be taken to achieve consistency of its estimator when we use, say, kernel method
for estimation (see remarks below).

First, we modify the empirical univariate distribution functions as:

Fn xð Þ ¼ 1
nþ 1

Xn
i¼1

1 �1;xð � Xið Þ

Gn yð Þ ¼ 1
nþ 1

Xn
i¼1

1 �1;yð � Yið Þ

Note that Fn(Xi) is the rank of Xi (among the X1, X2, . . ., Xn) divided by n þ 1, so that the pseudo-
observations Fn(Xi), i = 1,2, . . ., n are f i

nþ1 : i ¼ 1; 2; . . . ; ng.
Thus, next, we could take:

cn u; vð Þ ¼ 1
na2n

Xn
i¼1

K
u� Fn Xið Þ

an
;
v� Gn Yið Þ

an

� �

as a nonparametric estimator of c(u, v), for (u,v) [ [0,1]2.

Corresponding author
Hung T. Nguyen can be contacted at: hunguyen@nmsu.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

AJEB
4,3

28

mailto:hunguyen@nmsu.edu

	A closer look at stochastic frontier analysis in economics
	1. Introduction
	2. Generalities on stochastic frontier analysis
	3. Entering copulas
	4. Estimation by the method of sieves
	5. Causality analysis in stochastic frontier models
	References
	Appendix
	Empirical copulas
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	Parametric estimation
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	Semiparametric estimation
	Nonparametric estimation
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	Remark on methods of density estimation
	Nonparametric regression
	Nonparametric estimation of copulas



